و و المساود	KONEV,	Yu. I., Elektronnaya Tekhnika v Avtomatike, 1972, pp 183-184
	N. P.	Gvozdenko, A. A. Korshunov, B. D. Moiseyenko, and G. I. Chaptsev, "Thyristor Current Stabilizers"
	G. M.	Shkol'nik, A. P. Shershunov, and A. I. Yurov, "System for Protecting the Power Supply Against Short Circuits"
	V. M.	Bardin, V. P. Tsetlin, and V. D. Shepykin, "Specified Generators for Autonomic Thyristor Inverters and Frequency Converters"
	V. P.	Komlev and V. G. Chernov, "Pulse-Frequency D-C Converter"
	А. Т.	Timofeyev and V. L. Fel'dman, "Analyzing the Accuracy of Frequency Detectors in Frequency Stabilizers of D-C Voltage Sources"
	6/7	
		~ 96 ~

KONEV,	Yu. I., Elektronnaya Tekhnika v Avtomatike, 1972, pp 183-184
	Borisov, V. S. Mashinistov, and A. N. Dmitriyev, "Pulse-Stabilized RPM Regulator of a D-C Motor" 160
L. I.	Leonenko, "Forced Reverse by the Excitation Winding Circuit in a D-C Motor"
I. V.	Surant, "Thyristor-Controlled Oscillator With Switching by a Nonlinear Circuit"
3. M. I	Malyshkov, V. I. Ruslanov, "Photorelays" 168
lu. Ye.	Levitskiy, V. A. Petrov, and A. V. Yelin, "Transistor Time Relays With Release Delay" 172
	1/2
7/7	
	B. K. L. I. I. V. G. M.

USSR

UDC 621.375.145:621.382.8

GOLOVATSKIY, V.A., KONEV. YU.I., MASHUKOV, YE.V.

Power Semiconductor Integrated Circuits

V sb. Elektronnaya tekhnika v avtomatika (Electronics Techniques In Automation--Collection Of Works), Moscow, Izd-vo "Sovetskoye Radio," No 2, 1971, pp 131-132

Abstract: Brief data are presented concerned with the development of power semi-conductor integrated circuits with an output power up to 2000 watt. An exterior view is shown of the integrated construction of a bridge transistorized switching device which contains 8 KTSO5A and 12KTSO3A n-p-n transistors mounted on a 60 x 70 x 8 mm metal plate. 1 fig. 4 ref.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

and statement between the first time and the fact of t

USSR

VOL'F, L. A., YEMETS, L. V., KONEY, Yu. Ye., KOTETSKIY, V. V., MEOS, A. I., and KHOKHLOVA, B. A., Leningrad Institute of Textile and Light Industry imeni S. M. Kirov; Leningrad Scientific Research Institute of Antibiotics

"Preparation of Physiologically Active Fibers With Ion-Fixed Preparations"

Riga, Fiziologicheski i Opticheski Aktivnyye Polimernyye Veshchestva, "Zinatne," 1971, pp 159-165

Abstract: Sorption of colimycin, novocainamide, and brilliant green by modified polyvinyl alcohol (PVA) fibers containing sulfo and carboxyl functional groups was studied, with the aim of preparing physiologically active materials with antimicrobial, anti-inflammatory, and anesthetic properties. The best sorption of brilliant green and novocainamide took place on fibers with -COOH group in the salt (Na) form. The carboxyl group in H-form dissociated very little in acid solutions, but the same group in the salt (Na) form was ionized in a wide pH range. Similar results were obtained with colimycin. The sulfo group dissociated equally well in all media. Therefore, there were no significant differences in sorption of the above preparations on sulfoexchangers either in acid or salt form. Excess of preparations (1-1.5 fold) in solution and larger absorbing surface of fibers were of importance. A difference in 1/2

USSR

VOL'F, L. A., et al., Fiziologicheski i Opticheski Aktivnyye Polimernyye Veshchestva, "Zinatne," 1971, pp 159-163

the sorption rate of the above preparations by fibers with carboxyl groups in H- or salt (Na) form is attributed to a greater swelling of the salt exchanger (Na especially) in comparison with H-form. In experiments with animals it was shown that presence of an ionic bond between fibers and medicinal preparations makes the textile material more stable toward bacteria, as opposed to ordinary impregnation of fibers with antibiotics. Catgut and natural silk treated with colimycin preserved their antimicrobial properties 8 days after their presence in soft itssues of rabbits. This is attributed to the formation of electrovalent and hydrogen bonds between antibiotics and peptides.

2/2

- 91 -

Acc. Nr.: APO029431

Ref. Code: UR 0297

PRIMARY SOURCE: Antibiotiki, 1970,

PRODUCTION OF A NEW HEPTAENIC NONAROMATIC ANTIBIOTIC TBILIMYCIN BY ACT. CHARTREUSIS VAR. TBILISUS

Yu. D. Shenin, E. N. Sokolova, Yu. C. Kangu.

Leningrad Institute for Antibiotics

A new variant designated as Act. chartrensis var. tbilisus, producing along with shartresin a new antilungal heptaenic antibiotic of the nonaromatic group is described. The new antibiotic is hamed as tbilinycin.

REEL/FRAME

19681027

Acc. Nr: 100101134

Ref. Code: URO297

PRIMARY SOURCE: Antibiotiki, 1970, Vol 15, Nr. 3, pp. 208-212,

PRODUCTION OF ANTIBIOTICS OF AZALOMYCIN F TYPE BY ACTINOMYCES IMBRICATUS N. SP.

V. A. Tsuganov, Yu. Yo. Koned, N. P. Barashkova, L. Ya. Petrova, S. N. Salovyev
Leningrad Institute for Antibiotics

Three actinomycetes belonging to non-chromogenic actinomycetes were isolated from soils of arid zones of the South regions of the USSR. The aerial mycelium of the cultures was slightly developed of whitish color. The sporophores were spiral, the spores oval with smooth membrane. When grown on soybean media with glucose, the cultures produced antifungal antibiotics close to azalomycin F. Comparison of the isolates with the organism producing azalomycin F described in the literature and close species of actinomycetes allowed to classify it as a new species designated as Actinomyces imbricatus (Koney, Tsyganoy, Barashkova) n. sp.

1/1

REEL/FRAME 1985**07**51 est,

4

UDC 669.24:548.4

POPOV, L. YE., TERESHKO, I. V., GORENKO, L. K., KONEVA, N. A., KOZLOV, E. V., and KOVALEVSKAYA, T. A., Siterian Physicotechnical Institute imeni V. D. Kuznetsov and Tomsk Engineering Construction Institute

"Dislocation Structure of Ni3Al at Different Stages of Deformation"

Sverdlovsk, Fizika Metallov i Metallovedeniye, Vol 35, No 2, Feb 73, pp 409-418

Abstract: This study was conducted to study the change in the nature of dislocation structure in intermetallide Ni₃Al with increasing degree of deformation. Alloys with nickel and 22.9 and 24.0 at.% Al were investigated to which deformations of 1-12% were applied. At small degrees of deformation (1-2%) interlaces of dislocations were extended along slip traces and the average distance between slip traces was 8300 A. The number of interlaces and dislocation density increased with increased deformation. Plastic deformation of Ni₃Al results in the generation of three types of dislocations two of which are inherently located in octahedral planes and one -- cubic planes. In the deformed alloy numerous wide stacking faults are observed when alloy composition is close to stoichiometric and the energy of the stacking faults amounts to 29 erg/cm² for the alloy with 24.0 at.% Al. At high degrees 1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

e de la company de la company

USSR

POPOV, L. YE., et al., Fizika Metallov i Metallovedeniye, Vol 35, No 2, Feb 73, pp 409-418

of deformation, dislocation interlacings are noted which form a cellular structure. 9 figures, 22 bibliographic references.

2/2

- 70

1/2 018 UNCLASSIFIED PROCESSING DATE—300CT70
TITLE—MICRIBIOLOGICAL QUANTITATIVE DETERMINATION OF INOSITOL IN YEASTS

AUTHOR-(03)-KOROTCHENKO, N.I., BENDOSENKO, V.A., KONEVA, N.K.

CCUNTRY OF INFO--USSR

SOURCE-PRIKL. BIOKHIM. MIKROBIOL. 1970, 6(2), 243-7

DATE PUBLISHED 70

SUBJECT AREAS—BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS-YEAST, MICROBIOLOGY, QUANTITATIVE ANALYSIS, ALCOHOL

CONTROL MARKING-NO RESTRICTIONS

PROXY REEL/FRAME-3001/1806

STEP NO--UR/0411/70/006/002/0243/0247

CIRC ACCESSION NO--AP0127220

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

2/2 018 . UNCLASSIFIED PROCESSING DATE--300CT70 CIRC ACCESSION NO-AP0127220 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. TO DET. INCSITOL (I) IN YEASTS, A I G ALIQUOT OF THE DRIED MATERIAL IS AUTOCLAVED WITH 20 ML OF 20PERCENT HCL FOR 1 HR UNDER I ATM TO LIBERATE I. THE HYDROLYZATE NEUTRALIZED TO PH 5.2-5.7 AND DILD. TO A CONCN. OF 1-2 MU G-ML I. TO DET. I MICROBIOL., A 48 HR CULTURE OF SCHIZOSACCHAROMYCES PUMBE IS ADDED TO THE HYDROLYZATE, THE MIXT. INCUBATED 48 HR AT 35DEGREES: THE INTENSITY OF GROWTH MEASURED PHOTOCOLORIMETRICALLY, AND THE RESULT COMPARED TO A STD. CURVE MADE WITH KNOWN CONCNS. OF I. THE CONTENT OF I IN DRY YEASTS AS DETD. BY THIS METHOD IS, FOR DIFFERENT CANDIDA SPECIES, 1266-4792 MU G-G. THE LEVEL OF I DEPENDING PRIMARILY ON THE NATURE OF THE NUTRIENTS SUPPLIED. FACILITY: ALL UNION RES. INST. PROTEIN BIOSYN., USSR.

HUTI ACCIETEN

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

restremente personas, escarante una existamenta da en incrementa di libra. El del di digli di la constitució con escarbida

USSR

UDC 539.3:534.1

GUSEV, V. B., KONEVALOV, V. S., NIKIFOROV, A. S.

"On the Dissipative Properties of a Plate Partially Faced With Vibration Absorbing Material"

V sb. Rasseyaniye energii pri kolebaniyakh mekh. sistem (Energy Scattering in the Vibrations of Mechanical Systems -- Collection of Works), Kiev, "Nauk. dumka", 1972, pp 248-250 (from RZh-Mekhanika, No 3, Mar 73, Abstract

Translation: The dissipative properties of a plate upon the deposition of a vibration absorbing material on a portion of its surface are investigated. The dissipative properties of a rod of finite length, a certain part of which is coated with the vibration absorbing material, are initially considered to make a qualitative evaluation of these properties. Two cases are considered, in one of which the material is applied to the middle portion of the rod symmetric with its center, and in the other the material is applied at the ends of the rod. The experimental portion was conducted on circular plates of diameter 100 cm. Rubber was used as a vibration absorbing coating.

1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

GUSEV, V. B., et al, Rasseyaniye energii pri kolebaniyakh mekh. sistem, Kiev, "Nauk. dumka", 1972, pp 248-250

The coefficient of losses in the plate was measured under constant removal of the rubber from the surface of the plate. Measurements of the coefficient of loss were conducted by a reverberation method up to a 10-fold decrease in the amplitude of the free bending oscillations of the plate. It is pointed out that the dissipative properties of the plate at high frequencies are practically independent of the placement on it of one or another quantity (with respect to area) of vibration absorbing material. It is more reasonable to place the vibration absorbing material closer to the center of the plate to ensure the best dissipative properties of the plate at low frequencies. Yu. A. Belyayev.

2/2

- 71 -

UDG 538.3:538.4:621.362

KOVALEV, L. K., and KONEYEV, S. M.-A.

"Effect of the Asymmetry of an External Magnetic Field on Viscous Fluid Flow in an Annular MHD Channel"

Riga, Magnitnaya Gidrodinamika, No 3, Jul-Sep 72, pp 46-50

Abstract: The article considers the laminar, single-component flow $v(0,\,0,\,v)$ of an incompressible viscous fluid with constant conductivity on in an annular channel which has the potential difference U_e applied to its cylindrical, ideally conducting walls. The asymmetric, external, tangential magnetic field $B(B_r,\,B_0,\,0)$ is created by current in the central electrode, which is a certain small distance δ from the geometric axis of the channel. It is assumed that there is no Hall effect and the magnetic Reynolds number is small. The analytic solution of the two-dimensional problem follows the method of expansion in a power series of the small parameter $\delta \ll 1$. The resultant expressions for the velocity and potential in the channel in the zeroth and first approximations are used as the basis for calculating flow

1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

USSR

KOVALEV, L. K., and KONEYEV, S. M.-A., Magnitnaya Gidrodinamika, No 3, Jul-Sep 72, pp 46-50

parameters for different Hartmann number values. The latter indicate the possibility of periodic velocity and potential variations along the radius of the channel with an asymmetric magnetic field at Ha numbers 2 1000.

2/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

1/2 022 UNCLASSIFIED PROCESSING DATE--230CT70
EXTRUDED RUBBER GOODS DURING FLUID ZED BGO WITCH CENTER OF

EXTRUDED RUBBER GOODS DURING FLUIDIZED BED VULCANIZATION -U-AUTHOR-(03)-GALLE, A.R., KONGAROV, G.S., ROZHDESTVENDKIY, O.I.

COUNTRY OF INFO--USSR

SOURCE--KAUCH. REZINA 1970, 29(2), 23-5

DATE PUBLISHED ---- 70

SUBJECT AREAS--MATERIALS

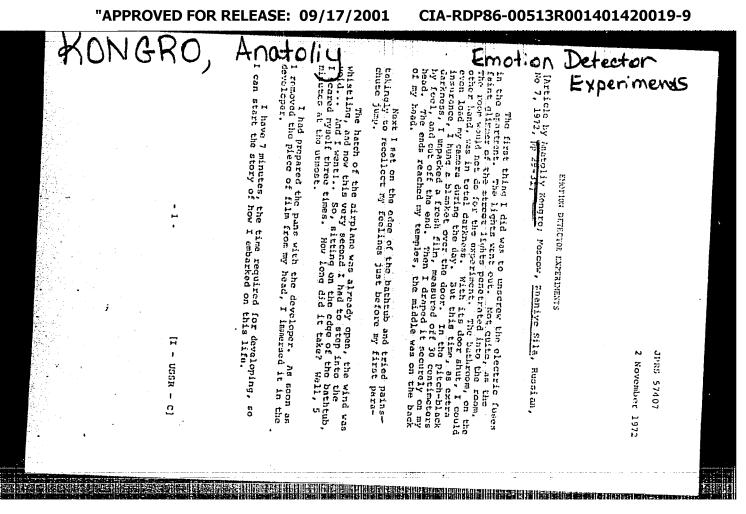
TOPIC TAGS--FLUIDIZED BED, CRYSTALLIZATION, CALCULATION, TEMPERATURE, RUBBER, VULCANIZATION

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/0458

STEP NO--UR/0138/70/029/002/0023/0025

CIRC ACCESSION NO--APOL19394


UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

A CHARLES AND AN ANTI-CONTROL OF THE CONTROL OF THE

2/2 022
CIRC ACCESSION NO--APO119394
ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. A METHOD WAS PROPOSED FOR CALCG.
THE TEMP. CHANGES (DELTA T) ON THE SURFACE AND IN THE CENTER OF AN
AS A FUNCTION OF THE VULCANIZATION TIME. THE CALCD. DELTA T AGREED WITH
USSR. FACILITY: NAUCH.-ISSLED. INST. REZ. PROM.,

UNCLASSIFIED

CIA-RDP86-00513R001401420019-9" **APPROVED FOR RELEASE: 09/17/2001**

UDG 666.764.23:543.062

KOROBKA, L. A., TRET'YAK, Z. A., and KONIK, I. P., Ukrainian Scientific Research Institute of Refractories

"Photometric Determination of Aluminum in Zirconium-Containing Refractories"

Moscow, Ogneupory, No 8, 70, pp 49-51
Abstract: A photometric method of alkaline separation of aluminum from zirconium-containing materials using chromasurol S is described. Use was made of salt solutions and artificial mixtures of refractory exides to study the techniques of preparing solutions of the real materials to be analyzed, as well as of methods of quantitative separation of aluminum and zirconium and specifications for photometric determination. The study indicates the possibility of determining aluminum in zirconium-containing refractories without having to remove the fusing agent used for the alkaline separation of aluminum from zirconium, hafnium, titanium, and iron. The statistical method of processing the analytical data on Al₂O₃ in zirconium refractories by photometry using chromasurol S is presented in a table in the original article. The photometric method provides high accuracy and reproducibility of results.

1/1

UDC 533.6.07+536.24+536.33

KONIKOV, A. A., NIKOLAYEV, G. N., and POLYAKOV, Yu. A. (Moscow)

"Heat Exchange Behind a Reflected Shock Wave in a Two-Phase Gas-Dynamic Stream"

Moscow, Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No 2, 1973, pp 127-136

Abstract: Measurements were made of the heat fluxes into a wall that reflected a shock wave that propagated in air containing a suspension of aluminum oxide particles having a size on the order of 1 micron. A shock tube was used, provided with a special pneumatic system for creating a gas-dust medium. The equipment used for measuring the heat fluxes was based upon the employment of thin-film resistance thermometers, and satisfied the requirements that were dictated by the short duration of the working process.

The range of shock-wave velocities in the two-phase medium embraced values of $V_{\rm S}$ from 3 to 6 km/sec. Radiant and conductive heat fluxes to the reflecting wall were measured. The measurement results were compared with the data of control experiments with pure air and with calculated values of heat fluxes from nondusty air at equal shock-wave velocities. It was

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

USSR

KONIKOV, A. A., et al., Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No 2, 1973, pp 127-136

established that the radiation of shock-heated gas is intensified by an order of magnitude as a consequence of the ionization of aluminum atoms that appear as a result of thermal decay of the aluminum oxide vapors. 5 figures. 9

2/2

- 14 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

KONIKOV, A. I., TARASOV, V. P.

"Effect of Fluctuation Noise on ADC for Position-by-Position Coding"

[Tr.] Mosk. Aviats. In-ta [(Works) of Moscow Aviation Institute], 1972, No 249, pp 89-95 (Translated from Referativnyy Zhurnal Kibernetika, No 6, 1973, Abstract No 6V460, by E. Gabidulin).

Translation: A trivial calculation of the probability of error in a certain position of an analog-digital converter is performed, if additive noise is

1/1

USSR UDC: 681.325.3

TARASOV, V. P., KONIKOV, A. I.

"Analysis of the Effect of Pulse Noise on a Precision Analog Voltage-to-Digital Converter"

Tr. Mosk. aviats. in-ta (Works of Moscow Aviation Institute), 1970, vyp. 200, pp 204-215 (from RZh-Avtomatika, Telemekhanika i vychislitelnaya tekhnika, No 9, Sep 70, Abstract No 9B555)

Translation: The purpose of this paper is to analyze the effect of pulse noise on an integrating analog-to-digital converter. As a result of the study, expressions are obtained which determine the error probabilities of the converters under the effect of pulse noise with the most widespread amplitude distribution laws, and it is shown that for high values of the generalized parameter the converter errors are larger under the effect of noise with a logarithmic-normal distribution. Expressions are obtained which define the worst conversion times as a function of the noise parameters and the converter and which permit correct selection of the aperture time of the integrating converter under the effect of pulse noise with various amplitude distribution laws. There are five illustrations and a three-entry bibliography.

67 -

1/1

KONIKOVA. A. S., Director, Biochemistry Laboratory, Institute of Surgery imeni A. V. Vishnevskiy, Academy of Medical Sciences USSR, POMOSOVA, A. V., Doctor of Biological Sciences, and NIKULIN, V. I., Surgeon

"Delayed Death"

Moscow, Znaniye-Sila, No 7, 1972, pp 6-7

Abstract: The purpose of the research described is to determine the mechanism of death. The authors are concentrating on the biosynthesis of protein from amino acids, upon which function the life of the organism depends. Protein exists in two states simultaneously: assimilation and dissimilation. Since circulation stops at death, no amino acids are furnished to cells for biosynthesis; does biosynthesis stop because it lacks material or because it is the mechanism of death? With an isotopic tracer, radioactive amino acids, and an artificial circulation-respirator, it is possible to determine which body organs continue biosynthesis and to what degree compared with a normal living being. It is known from animal experiments that protein biosynthesis stops in the brain and spleen first, in the pancreas last. Animals have been fully reanimated up to 15 minutes after death, but after more than 15 minutes biosynthesis of some tissue cannot be reanimated. When the body temperature of animals was lowered to 15-16°, biosynthesis ceased, and complete anabiosis was possible. In both death and hypothermia, assimilation ceases, but in 1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

KONIKOVA, A. S., et al., Znaniye-Sila, No 7, 1972, pp 6-7

death dissimilation continues. Rabbits with induced hypothermia for 2 hours, and rabbits which have been dead for ten minutes and then undergone hypothermia for 1 hour, have been completely reanimated. Chemical and electrical methods for stopping dissimilation are being sought. Electrical shock has been used to help stimulate more complete biosynthesis in the reanimation of rabbits. Biosynthesis of protein in tissue removed from organisms up to 4 hours after death has resumed when the tissue was placed in a solution containing amino acids.

2/2

- 8 -

UDC 616.61-002.151-02

AGAFONOV, V. I., Maj Gen Med Serv, Docent; LEV, M. I., Col Med Serv; NOSKOV, F. S., Lt Col Med Serv, Candidate of Medical Sciences; KONIKOVA, R. Ye., Candidate of Biological Sciences; YELIGULASHVILI, R. K., Candidate of Medical Sciences; GAVRILYUK, B. K., Doctor of Medical Sciences; KULIKOV, I. A., Lt Col Med Serv; YEFIMOV, L. S., Lt Col Med Serv; SERGEYCHIK, I. I., Capt Med Serv; BELYAYEVA, H. S.

"Etiological Decoding of an Outbreak of Hemorrhagic Fever With a Renal Syndrome"

Moscow, Voyenno-Meditsinskiy Zhurnal, No 9, Sep 71, pp 46-49

Abstract: In June and July 1970, in the southern area of Khabarovskiy Kray, an outbreak of hemorrhagic fever with a renal syndrome (HFRS) occurred among workers employed on construction work and housed in a tent camp located on a hill surrounded by swampy meadows. Despite repeated rodent extermination, the camp area was infested with rodents and ticks. Relocation of the workers to a nearby village halted the outbreak. Only one of the 34 hospitalized workers died. The onset of the 1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

AGAFONOV, V. I., et al, <u>Voyenno-Meditsinskiy Zhurnal</u>, No 9, Sep 71, pp 46-49

disease was acute, and fever of 39-41°C lasted 3-15 days. Renal and cardiovascular insufficiency developed in five patients. The clinical picture was atypical, suggesting both HFRS and leptospirosis. After test for Leptospira proved negative in all patients, two types of tests for hemorrhagic fever antigens were performed: indirect hemagglutination inhibition and agglutination with fluorescent antibodies. In the indirect hemagglutination tests, sheep erythrocytes sensitized with antibodies against the 10-10 strain of hemorrhagic nephrosonephritis (HNN) were used. All tests were positive. The fluorescence tests yielded green granular fluorescence in spleen smears. It is concluded that the green granular fluorescence is specific for HNN, and that the granules represent areas of replication of the HNN virus.

2/2

- 111 -

1/2 012

TITLE--EXCITED NUCLEAR STATES DURING CAPTURE OF NEGATIVE MUONS BY CARBON AUTHOR-(05)-BUDYASHOV, YU.G., ZINOV, V.G., KONIN, A.D., MEDVED, S.V.,

COUNTRY OF INFO-11550

SOURCE—ZHURNAL EKSPERIMENTAL'NOY I TEORETICHESKOY FIZIKI, 1976, VOL 58, NR 4, PP 1211-1218

DATE PUBLISHED----70

SUBJECT AREAS--PHYSICS, NUCLEAR SCIENCE AND TECHNOLOGY

TOPIC TAGS--NUCLEAR ENERGY LEVEL, EXCITED NUCLEUS, MESON INTERACTION, MUON, CARBON ISOTOPE, OXYGEN ISOTOPE, NUCLEAR SPIN

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1989/1892

STEP NO--UR/0056/70/058/004/1211/1218

CIRC ACCESSION NO--APO108222

UNCLASSIFIED

2/2 012 CIPC ACCESSION NO--APO108222 .UNCLASSIFIED ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE PROBABILITIES FOR FORMATION OF PROCESSING DATE--230CT70 EXCITED LEVELS OF THE DAUGHTER NUCLEI PRODUCED BY CAPTURE OF NEGATIVE MUONS BY CARBON OR DXYGEN NUCLEI ARE STUDIED. THE TOTAL TRANSITION RATE TO ALL EXCITED BOUND STATES OF THE B PRIMETS SEXTILE NUCLEUS IS DETERMINED FOR THE C PRIME12 PLUS MUNEGATIVE YIELDS B PRIME12 SEXTILE PLUS V REACTION; IT IS EQUAL TO (0.76 PLUS OR MINUS 0.14) TIMES 10 PRIMES SEC NEGATIVEI. FOR THE O PRIME 16 PLUS MUNEGATIVE YIELDS MINUS N PRIMEIS SEXTILE PLUS N PLUS V REACTION THE TOTAL TRANSITION RATE TO N PRIME15 SEXTILE EXCITED BOUND STATES WITH POSITIVE PARITY IS FOUND TO BE (14 PLUS OR MINUS 5) TIMES 10 PRIMES SEC NEGATIVE I AND THE TRANSITION RATE TO THE N PRIME 15 SEXTILE SPIN THREE HALVES LEVEL IS 120 PLUS OR MINUS 51 TIMES 10 PRIMES SEC NEGATIVEL PART OF THE RESULTS STRONGLY DIFFER FROM THE THEORETICAL PREDICTIONS. OB"YEDINENNYY INSTITUT YADERNYKH ISSLEDOVANIY. FACILITY:

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

UNCLASSIFIED

KONIN, A. M., POZHELA, Yu. K., and YANAVICHENE, N. Yu. (Institute of the Physics of Semiconductors, Lithuanian Academy of Sciences)

"Galvanomagnetic Recombination Effect in an Inhomogeneous Magnetic Field"

Vilnius, Litovskiy Fizicheskiy Sbornik, No 3, 1973, pp 393-399

Abstract: An intrinsic semiconductor in a homogeneous magnetic field changes its resistance as a consequence of the redistribution of the current carriers along the cross section of a sample having different surface recombination rates on opposite sides, one of them being low. Carrier redistribution takes place at a distance λ_0 of the diffusion length.

In an inhomogeneous magnetic field a change in resistance takes place when the surface recombination rates on both sides are high.

In this paper the authors solve the problem for the case of weak fields and a linear variation of the magnetic field. It is shown that the change in concentration in this case occurs not only at a distance from the sides of the sample but also along its entire cross section. The change in resistance takes place also when the surface recombination rates on both sides are high. - 29 -

USSR

KONIN, A. M., et al., Litovskiy Fizicheskiy Sbornik, No 3, 1973, pp 393-399

The experimental qualitatively confirms the calculations: 1) the change in resistance takes place only in the presence of grad H; 2) it increases with

2/2

UDC: 621.791:620.186.4:669.15-194

KONISHCHEV, B. P., Engineer, Gor'kiy Polytechnic Institute ineni A. A. Zhdanov

"Preventing the Formation of Microcracks in the Fusion Zone during Welding of Medium-Carbon Grades of Steel"

Moscow, Svarochnoye proizvodstvo, No 5, 1971, pp 40-41

Abstract: The author studies the conditions associated with the formation of microcracks and strains in the zone of fusion during automatic, submergedarc welding of corner joints made from medium-carbon grades of steel. It is shown that it is possible to prevent the formation of such defects by ensuring the production of a favorable seam shape by limiting are voltage and by the precise direction of the electrode in the corner of the joint. Original article: four figures and nine bibliographic entries.

1/1

Titanium

USSR

UDC: 621.791.753.045:669.14:669.295.004.67

KONISHCHEV. B. P. (Engineer), Gor'kiy Polytechnic Institute imeni A. A.

"Titanium Reduction From Slag in Submerged-Arc Welding of Steel"

Moscow, Svarochnoye proizvodstvo, No 12, Dec 71, pp 21-23

Abstract: Discussed is the theoretical possibility of titanium reduction in submerged-arc welding of steel. Proposed is a procedure for the thermodynamic calculation of the interaction by the metal of the weld pool with slags containing titanium dioxide (taking into account Ti activities in the weld bath metal as well as TiO2 and FeO in the slag) as well as equations to facilitate calculation of the Ti content. The feasibility of microalloying the weld metal with 0.02 to 0.10% Ti from fused silicon-free fluxes containing 10 to 30% TiO2 under certain temperature conditions has been demonstrated both theoretically and experimentally. The expected content of Ti in the weld metal is shown to be a function of TiO2 and FeO activities in the slag. The Ti determined by the proposed method of

1/2

USSR KONISHCHEV, B. P. (Engineer), Svarochnoye proizvodstvo, No 12, Dec 71, pp 21-23

analysis is that reduced from the slag and present in the form of a solid solution but not titanium from the nonmetallic inclusions in the weld. A (1 illustration, 2 tables, 11 bibliographic references).

2/2

- 64 -

UDC 669.017:539.4+669.27/29

SAVITSKIY, YE. M., TYLKINA, M. A., KONIYEVA, L. Z., LOGUNOV, A. V., and PETRUSHIN, N. V., Institute of Metallurgy

"Investigation of Carbon Solubility in Mo+45%Re Alloy" Ordzhonikidze, Izvestiya Vysshikh Uchebnykh Zavedeniy, Tsvetnaya Metallurgiya, No 6, 1973, pp 125-129

Abstract: The solubility of C in the Mo+45%Re alloy was investigated by measuring the electric resistance. The derived experimental data show that the solubility of C in the Mo+45%Re alloy comprises 0.035% at 15500 and that it comes up to 0.05% at 1800°. In the presence of 45%Re, the solubility of C in Morises 25% at 1800° and 75% at 1550°. The presence of 0.035%C in the solid solution increases the electric resistance Q of the alloy by 7.5 MQ.cm; the presence of carbides in the alloy at a C content up to 0.265% has no noticeable influence on the level of its 9. The temperature coefficient of 9 of Mo+45%Re alloy can be considered nearly constant and equal to 2.9·10-3μΩ·cm·deg-1; it decreases at transition into the 0.035%C solid solution. The 0-curve of the Mo+45%Re+0.4%C alloy shows a break at 1250-1260°. Three figures, one table, 1/1

UNCLASSIFIED PROCESSING DATE--160CT70

1/2 028

TITLE--THE ENERGY BALANCE IN A DENSE FUSION PLASMA CONTAINED BY HALLS -U-

AUTHOR-(03)-ALIKHANOV, S.G., KONKASHBAEV, I.K., CHEBOTAEV, P.Z.

COUNTRY OF INFO--USSR

SOURCE--NUCLEAR FUSION, VOL. 10, MAR. 1970, P. 13-18

DATE PUBLISHED ---- MAR 70

SUBJECT AREAS -- PHYSICS

TOPIC TAGS--DENSE PLASMA, PLASMA CONTAINMENT, THERMONUCLEAR REACTION, HOMOGENEOUS MAGNETIC FIELD, HEAT BALANCE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1985/1750

STEP NO--AU/0000/70/010/000/0013/0018

CIRC ACCESSION NO--APO101803
UNCLASSIFIED

PRUCESSING DATE--160CT70 UNCLASSIFIED 2/2 028CIRC ACCESSION NO--APO101803 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE AUTHORS CONSIDER THE POSSIBILITY OF A SELF SUSTAINING THERMONUCLEAR REACTION IN A DENSE PLASMA IN GREATER THAN OR EQUAL TO 10 TO THE 16TH CU CM). THE PRESSURE OF THE PLASMA IS CONTAINED BY WALLS AND THE MAGNETIC FIEDL ONLY SERVES TO REDUCE THERMAL CONDUCTIVITY IN A TRANSVERSE DIRECTION. A SOLUTION IS OBTAINED FOR THE PLASMA BALANCE EQUATION THAT MAKES ALLOWANCE FOR RADIATION LOSSES ALONG THE MAGNETIC FIELD, AND IT IS SHOWN THAT THERE IS NO SATISFACTORY SOLUTION ACROSS A UNIFORM MAGNETIC FIELD. THE AUTHORS DISCUSS THE POSSIBILITY OF A STEADY STATE THERMONUCLEAR REACTION WITH A NONUNIFORM MAGNETIC FIELD. FACILITY: AKADEMIIA NAUK SSSR, INSTITUT LADERNOI FIZIKI. NOVOSIBIRSK, USSR. UNCLASSIFIED

Acc. Nr: AP0052435_

Abstracting Service: CHEMICAL ABST. 5-70

we are constructed in the construction of the

Ref. Code:

4R 0342

va. I. N.; Konkin. A.A.; Shcheglova. G. V. (MTI. Moscow. USSR). Text. Prom. (Moscow) 1970, 30(1), 55-6 (Russ). Wool fabrics modified by grafting with 2-methyl-5-vinylpyridine were treated with 1% aq. soln. of Cu(OAc), or AgNO₃. Similarly, wool grafted with methacrylic acid was treated with 1% pentachlorophenol or hexachlorophene solns. in MeOH. The grafting increased the tensile strength of the fabric by 18-20%. The bactericidal additives inhibited the propagation of Staphylococcus aureus and intestinal bacteria when 1-1.5% Cu or Ag or ₹7.32% chlorinated phenols were present.

jD.

4

REEL/FRAME 19821069

UNCLASSIFIED PROCESSING DATE--115E970 TITLE--NONSPINNERET FORMATION OF FIVERS FROM POLYMER MELTS -U-AUTHOR-PEREPELKIN, K.YE., PODOSENOV, V.V., KONKIN, A.A. COUNTRY OF INFO--USSR SOURCE--KHIM. VOLOKNA 1970, (1), 11-13 DATE PUBLISHED----70 SUBJECT AREAS -- MATERIALS TOPIC TAGS--POLYPROPYLENE FIBER, POLYSTYRENE RESIN, MOLECULAR WEIGHT, TEXTILE INDUSTRY MACHINERY/(U)MOPLEN FBOOL POLYPROPYLENE FIBER CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0133/70/000/001/0011/0013 PROXY REEL/FRAME--1984/1817 CIRC ACCESSION NO--APO100391 UNCLASSIFIED

elenaturalii: izezalii izilasia elezaria; izeze elezaria

PROCESSING DATE--11SEP70 UNCLASSIFIED 2/2 012 CIRC ACCESSION NO--AP0100391 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE FORMATION OF POLYPROPYLENE (I) (MOPLEN FR-001 OF MOL. WT. 110,000) AND ATACTIC POLYSTYRENE (II) (OF MOL. HT. 80,0001 FIBERS MEANS OF A DIAPHRAGM PLACED ON I AND II MELTS WAS STUDIED AT VARIOUS TEMPS. MAX. FORMATION RATES AT 200, 230, AND 250DEGREES WERE 650, 1000, AND 3,000 M-MIN, RESP. THE DIAM. OF 1 AND 11 FIBERS WAS INVERSELY PROPORTIONAL TO THE FORMATION RATE. BINARY FIBERS, HAVING A II CASING AND A I, SILICONE DIL, WOOD'S METAL, OR N NUCLEUS WERE PREPD. BY A SPECIALLY DESIGNED APP. A CROSS SECTIONAL DIAGRAM OF THE APP. AND ITS HODE OF OPERATION WERE PRESENTED. THE FORMATION RATES, CONSUMPTION OF THE INJECTED COMPONENT. AND THE INNER AND OUTER DIAMS. OF THE BINARY FIBERS WERE TABULATED FOR EACH FIBER SYSTEM. UNCLASSIFIED

UNCLASSIFIED PROCESSING DATE--18SEP70
1/2 029 UNCLASSIFIED PROCESSING DATE--18SEP70
TITLE--RHEOLOGICAL PROPERTIES OF CONCENTRATED SOLUTIONS OF POLYMER

AUTHOR-(03)-KISELEVA, G.F., PENKOVA, M.P., KONKIN, A.A.

COUNTRY OF INFO--USSR

SOURCE--KHIM. VOLOKNA 1970, (1), 13-16

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY, MATERIALS

TOPIC TAGS--POLYMER RHEOLOGY, CELLULOSE RESIN, ACETATE, POLYACRYLATE RESIN, COPOLYMER, VISCOMETER, FLUID VISCOSITY, SHEAR STRESS/(U)AKV2 VISCOMETER

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1984/1818

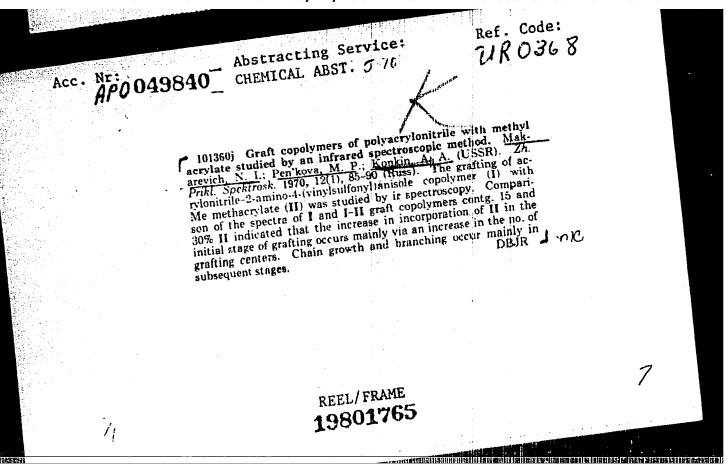
STEP NO--UR/0183/70/000/001/0013/0016

CIRC ACCESSION NO--AP0100392

-UNCLASSIFIED-

UNCLASSIFIED PROCESSING DATE--18SEP70
CIRC ACCESSION NO--APO100392
ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE RHEGL. PROPERTIES OF CONCO.
(12 TO 22PERCENT) SECONDARY CELLULOSE ACETATE (I), POLY(ME ACRYLATE)
(II), I PLUS II MECH. MIXT., AND 80:20 I-II GRAFT COPOLYMER SOLNS. IN
HCONME SUB2 OR ME SUB2 CO WERE STUDIED AS A FUNCTION OF TEMP., POLYMER
CONCN. IN SOLN., AND THE CHEM. COMPN. OF THE SOLVENT AT 20-60DEGREES BY
MEANS OF A CAPILLARY VISCOMETER AKV-2 AT A SHEAR STRESS RANGE OF 3
TIMES 10 PRIME4 MINUS 8 TIMES 10 PRIME5 DYNE-CM PRIME2. GRAFTING OF
FLEXIBLE II MACROMOLS. ON I LED TO INCREASED SOLN. VISCOSITY, WHEREAS
THE PRESENCE OF I AS A COMPONENT OF THE MECH. MIXT. HAD A PLASTICIZING
EFFECT ON THIS SOLN. AND DECREASED SOLN. VISCOSITY.

UNCLASSIFIED


UNCLASSIFIED

PROCESSING DATE--18SEP70

PROCESSING DATE--18SEP70

CIRC ACCESSING DATE--18SEP70

FUNCTION OF THE PROPERTIES OF CONCO.

UNCLASSIFIED

UN "APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9 TITLE--SYNTHESIS OF ARSENIC CONTAINING CELLULOSE ESTERS -U-AUTHOR-(03)-PREDVODITELY, D.A., BUYANOVA, V.K., KONKIN, A.A. of Superior SOURCE--VYSOKOMOL. SOEDIN., SER. B 1970, 12(1), 74-7 COUNTRY OF INFO--USSR DATE PUBLISHED -----70 SUBJECT AREAS--CHEMISTRY, MATERIALS, BIOLOGICAL AND MEDICAL SCIENCES TOPIC TAGS--ORGANIC ARSENIC COMPOUND, CELLULOSE RESIN, NATURAL FIBER, FABRIC, BENZENE, ESTERIFICATION, CHEMICAL SYNTHESIS, FIRE RESISTANT MATERIAL, BACTERICIDE ADDITIVE CONTROL MARKING--NO RESTRICTIONS STEP ND--UR/0460/70/012/001/0074/0077 DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1995/1192 CTRC-ACCESSION NO--APOLI6657 UNCLASSIFIED

PROCESSING DATE--300CT70 UNCLASSIFIED ABSTRACT. COTTON DOWN ACTIVATED WITH ACOH OR 029 CIRC ACCESSION NO--APO116657 2/2 DRESSED VISCOSE STAPLE FABRIC (1) CONTG. C SUB6 H SUB6 INCLUSIONS WAS ABSTRACT/EXTRACT--(U) GP-0-REFLUXED WITH TOPERCENT PHASO IN SOLN. IN C SUB6 H SUB6 (IN THE PRESENCE OF H SUB2 SO SUB4) AT BODEGREES FOR 4 HR TO GIVE MODIFIED CELLULOSE (11) CONTG. 8.6PERCENT AS. II ESTERS OF PENTAVALENT AS HERE OBTAINED BY TRANSESTERIFICATION OF I CONTG. C SUB6 H SUB6 INCLUSIONS IN ETOH-C SUB6 H SUBG. THE REACTION INVOLVED ESTERIFICATION OF RAS (O) (OH) SUB2 WITH ETOH FOLLOWED BY TRANSECTERIFICATION TO GIVE CELL DAS(D) (DET) EQUALS R (CELL EQUALS CELLULOSE MOIETY). I WAS ALSO REFLUXED WITH ME SUB2 AS (0) OH, P.HOC SUB6 H SUB4 AS (0) (OH) SUB2, OR PHAS(0)-(OH) SUB2 AT 60DEGREES FOR 4-7 HR TO GIVE ESTERS CONTG. 1.2-5. BPERCENT AS. ARSENIC-CONTG. II ESTERS WERE FIRE RESISTANT AND EXHIBITED BACTERICIDAL AND PHYSIOL. ACTIVITY. ISKUSSTV. VOLOKNA, MYTISHCHI, USSR. UNCLASSIFIED

SSR

) Long

UDC 621.396,69:681.373.54(086.8)

USSR

YANYSHEV, P. K., KON'KOV, A. A., YANYSHEVA, K. B.

"A Method of Controlling the Temperature Coefficient of Frequency of Metallic Radio Engineering Articles"

USSR Author's Certificate No 253255, Filed 28 Dec 67, Published 24 Feb 70 (from RZh-Radiotekhnika, No 10, Oct 70, Abstract No 10v386 P)

Translation: This Author's Certificate introduces a method of controlling the temperature coefficient of frequency of metallic electronic parts such as the resonators in electromechanical filters. The procedure is based on controlling the physical parameters of the parts. As a distinguishing feature of the patent, the range of variation in the temperature coefficient of frequency is extended by case hardening the given part to shift the temperature coefficient of frequency toward more positive values. Part to shift the temperature coefficient of frequency toward more positive values. Roller treatment may be used for case hardening. On the other hand, the temperature coefficient of frequency is shifted toward more negative values by softening the surface layer, for instance by electropolishing.

1/1

PROCESSING DATE--20NOV70 UNCLASSIFIED TITLE-INCREASE IN THE PHYSICOMECHANICAL PROPERTIES OF CONCRETE HARDENING AT SUBZERU TEMPERATURES -U-

AUTHOR-105)-GURBONGS, YE.P., GOGIN, V.F., KONKIN, A.P., GORBONUS, A.D.,

RATINEV, V.B.

COUNTRY OF INFO-USSR

REFERENCE-GIKRYTIYA, IZJBRET.. PROM. OBRAZISY, TOVARNYE ZNAKI 1970, SOURCE-U.S.S.R. 267,425 DATE PUBLISHED--01APR70

SUBJECT AREAS-MATERIALS

TOPIC TAGS--CONCRETE, COLD HARDENING, LOW TEMPERATURE EFFECT, CALCIUM COMPGUND, PATENT

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3002/1415

STEP NO--UR/0482/70/000/000/0000/0000

GIRC ACCESSION NO--AAO128814

UNCLASSIFIED

PROCESSING DATE-- 20NOV70 UNCLASSIFIED 023 2/2 CIRC ACCESSION NU--AA0128814 ABSTRACT. THE PHYSICOMECH. PROPERTIES OF ABSTRACT/EXTRACT--(U) GP-0-COLD CONCRETE WERE INCREASED BY INTRODUCING COMPLEX ADDITIVES INTO THE CONCRETE MIXT. TO SPEED UP THE HARDENING OF CONCRETE AT MINUS 25DEGREES AND COMBINED WITH THE THERMOS METHOD AT MINUS SOCIEGREES. A MIXT. OF CACL SUB2 AND CA NITRITE NITRATE 7-25PERCENT ON THE HT. OF THE MIXING WATER WAS USED FOR THE ADDITIVE. UNCLASS IF IED

CIA-RDP86-00513R001401420019-9"

APPROVED FOR RELEASE: 09/17/2001

Į

USSR

WC 611.8:534.612.1

ALEKSANDROV, L. N., DYSKIN, YE. A., ZIATISKAYA, N. N., KONKIN, I. F., DEV, I. D., TIKHOHOVA, L. P., FILATOV, A. I., and SHADRINA, R. S., Department of Normal Anatomy, Hilitary-Medical Academy imeni S. M. Kirov

"Condition of Some Nerve Structures After Exposure to Powerful Shock Waves"

Leningrad, Arkhiv Anatomii, Gistologii i Imbriologii, No 10, 1971, pp 12-20

Abstract: Cats were exposed to a powerful shock wave with an excess pressure of 0.1 to 10 kg/cm² lasting about 0.1 sec. The effect was not lethal and after the experiment the animals were externally indistinguishable from normal cats. They were sacrificed at various times during the 30 days following exposure to the shock wave and the nerves in the walls of the vena cava, digestive organs, dura and pia mater of the brain and spinal cord, pancreas, and thyroid were histologically examined. The modullated fibers and preterminal portions of the receptors underwent the most distinct changes. The axial cylinders were swollen and the contours uneven. Along the course of the fibers were solitary or multiple varicosities. These reactive changes were largely reversible. However, some of the nerve elements proved to be quite resistant to the shock wave, notably the nonmedullated fibers, some afferent structures (e.g., diffuse receptors), and encapsulated cell bodies.

. 77 ..

KONKIN

5

[Article by A._2, Serikova, 1, E, Konkin and T. P. Glebushko: Hostor,
Kosmicheskaya Biologiya i Heditatna "Korsicheskaya Biologiya i Heditatna" Korsicheskaya Biologiya i Heditatna "Korsicheskaya Biologiya i Heditatna "Korsicheskaya Biologiya i Heditatna "Korsicheskaya Biologiya i Heditatna "Korsicheskaya" |
Kosmicheskaya Biologiya |
Kosmicheskaya |
Kosmicheskaya Biologiya |
Kosmicheskaya |
Kosmic properties (activation of fibrinolysis, increase in herparin content, decrease in the quantity of processulants). Hemocoagulation disturbances in the first group of animals were greater, suggesting an effect from the gradient factor. Hemocoagulation parameters tended to return to the normal level on the sixth day after exposure. Abstract: Acceleration-induced changes in blood coagula-tion in cats were examined by thromboelastrographic and coagulographic techniques. Exposure of the animals to accelerations applied as a repeated (first group) or single (second group) stress effect increased the anticoagulation

CHANGES IN BLOOD COAGULATION UNDER THE INFLUENCE OF GRAVITATIONAL LOADS DETERMINED FROM THROUGUELASTOCHAPHY DATA

UDC 616:151:5-092.9-02:612,014,477-063

The state of the blood coagulation system under the influence of different extremal factors has been studied by many authors. V. G. Petrukhin (1963), Yz. H. Chazov and V. G. Ananthonko (1995), A. V. Yermain and V. I. Stupantsov (1970) and A. V. Drozdova (1970) observed an increase in permubbility of the vascular wall and homorrhaging in different organs after gravitational stress on the living organism. O. D. Anashkin (1968) noted changes in the content of procoagulants and activation of the fibrinolytic system in animals after flight on an artifical arth partialite. R. A. bardina, et al. (1970) demonstrated changes transpiring in the vascular and nervous systems under the influence of gravitational loads. that the animals in the first group experienced acceleration including exposure to a gradient of increase in acceleration, its intensity and duration, whereas In this investigation the experiments were made on cuts which were subjocted to a single series of accelerations of 10 g (first group, eight cats)
and single exposure to an acceleration of 10 g (second group, six cats) using
schedules formulated by Ye, A. Dyskin and B. M. Savin (1970). The difference
in the gravitational stress for animals in the first and mocond groups was
that the animals in the first group experienced acceleration including exposur group were exposed to operation of only the latter two

CIA-RDP86-00513R001401420019-9" APPROVED FOR RELEASE: 09/17/2001

12 April 72 JPRS 5568

USSR

KONKIN, V. D. and KVICHKO, L. A., Ukrainian Scientific Research Institute of Metals

"Determination of Soluble and Bonded Aluminum in Steels Containing Titanium"

Moscow, Zavodskaya laboratoriya, No 5, 1971, pp 538-539

Abstract: A metood for determining aluminum and aluminum oxides in steels containing titanium is said to be superior to that recommended by GOST 11658-65. The GOST method cannot be used for determining thousandths of a percent of aluminum content, whereas, the method described can. For determining aluminum in steels containing up to 0.24 Ti, S chromazurol reagent is used. This procedure is described as are procedures for determining the aluminum content of solid solutions. A table presents the results in determining the aluminum content of standard or synthetic specimens, such as the 126G and 155v types.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

a innumentali i janumaja janijanstandina masaati asi alam dati a

USSR

UDC: 536.24:532.54

BARULIN, Yu. D., VIKHREY, Yu. V., DYADYAKIN, B. V., KOBLYAMOV, A. N., KON'KOV, A., LOKSHIN, V. A., SINITSYN, I. T., Editorial Staff of Inzh. 112. zh., Academy of Sciences of the Belorussian SSR

"Heat Exchange During Turbulent Flow of Water With Supercritical Farameters of State in Vertical and Horizontal Pipes"

Tenlootdacha pri turbulentnom techenii v vertikal'nykh i gorizontal'nykh trubakh vody sverkhkriticheskikh parametrov sostovaniya (cf. English above), Minsk, 1970, 16 pp, ill. (No 2315-70 Dep.) (from RZh-Mekhanika, No 4, Apr 71, Abstract No 4B739 DEP)

Translation: The paper presents the results of an experimental study of heat transfer during rising, descending and horizontal flow of water with supercritical parameters of state in circular tubes. The experimental values of the coefficients of heat transfer were found in the following ranges of working parameters: pressure 225-265 bars; mass flowrates \$25-5000 kg/cm²·s; Reynolds number (12.5-450)·10³; specific thermal load 0.2-6.5 MW/m²; flow temperature +50-500°C; wall temperature +60-750°C; inside

1/2

60 -

BARULIN, Yu. D. et al., Tewlootdache pri turbulentnom techenii 7 vertikal'nykh i gorizontal'nykh trubakh vody sverkhkritichskikh parametrov sostoyaniya, Minsk, 1970 (No 2315-70 Dep.)

diameter of the tubes (3, 8, 20)·10⁻³ m; relative length up to 300. Experimental data are obtained on the effect which the direction of motion of the liquid flow has on heat exchange in the supercritical region. A study is made of the nature of the change in the coefficient of heat exchange on the initial section and around the perimeter of horizontal tubes. Bibliography of twelve titles. Authors' abstract.

5/5

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

~USSR

UDC 535.33

INTERPRETATION TO THE PROPERTY OF THE PROPERTY

KON KOV, A. A. and VORONTSOV, A. V.

"Integral Radiation of the Main MO Band at High Temperatures"

Leningrad, Optika i Spektroskopiya, Vol 34, No 5, May 73, pp 1026 - 1027

Abstract: Numerous measurements have been made of the integral coefficient of absorption of the main band of the MO molecule, most of them at room temperature. Although some earlier results deviate, most of the later studies yield a value of 125 ± 14 centimeters -2 atmospheres -1. Three studies have been made at higher temperatures, two at 2500°K (Breeze and Ferriso, Journal of Chemical Physics, Vol 41, page 342, and Fukuda, Journal of Chemical Physics, Vol 42, page 521) and one at 5000°K (Feinberg and Camac, J.Q.S.R.T., Vol 7, page 581). The authors of the last study believe that the centers of the line were reabsorbed in the first two (at 2500°). Feinberg and Camac obtained a value of 124 centimeters -2 atmospheres -1, in agreement with the studies at room temperature. The results seem to confirm the assumption of a harmonic oscillator for the main MO band.

In the present study the authors extended these tests to 7500°K by heating the MO in a shock tube, both in air and in an air-water nixture. Eliminating various sources of noise and interference, the authors obtained a value of 120 centimeter ⁻² atmospheres ⁻¹, and found that the measurements did not depend 1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

USSR

KON'KOV, A. A. et al, Leningrad, Optika i Spektroskopiya, Vol 34, No 5, May 73, pp 1056 - 1027

on temperature within the limits of error. This confirms the utility of the harmonic oscillator approximation.

2/2

- 75 -

N2:02 = 4:1 (air). The equilibrium was calculated for pressures which

permit the operation of xenon flashiamps in an admixture of nitrogen and deals with two mixture ratios: $N_2:O_2 = i$: i (equimolecular mixture), and

oxygen (760 torr) or in pure mixtures of nitrogen and oxygen (50 torr).

occurring in these mixtures in a pulse-discharge plasma. The investigation

temperature range 298 to 20,000 $^{
m G}$ K is considered to evaluate the processes

Equilibrium in altrogun-oxygen mixtures within the

ZhFKh, v. 46, no. 6, 1430-1432. enygen mixtures at high temperatures. I. A. Semiokhin. Equilibrium in nitrogen-Andreyev, Yu. P., Ye. Y. Gusev, and duc 12-R.740/511-113

68

es file

Experimental investigation of infrared Kon'kov, A. A. and A. V. Vorontsov.

expand the range of conditions for infrared radiation investigations. contradictions in the data on the infrared radiation from nitrogen, and to in fields of nitrogen atoms is discussed. The aim was to eliminate some Infrared radiation from the free-free transitions of electron radiation from nitrogen. Ois, v. 32, no. 4, 1972, 655-660,

relationship obtained by Firsov and Chibisov [ZhETT, v. 19, 1960, 1770] if σ_N^2 = 1.6x10 -15 cm², and σ_N^4 = 2.7x10 -15 cm², where σ is the electron classic answers and the electron elastic scattering cross section. ition of electrons in nitrogen atom fields can be described by the wave velocity. It is shown that the absorption from the free-free transnitrogen gas parameters were determined on the basis of the shockwavelengths of 2-6 μ . The nitrogen was heated by a shock tube, and the temperature range of 7009-8500° K, at pressures of 30-75 atm, and

Fillragen absorption coefficients were measured in the

CIA-RDP86-00513R001401420019-9" APPROVED FOR RELEASE: 09/17/2001

USSR

UDC 535.33/.34-15]:546.217

KON'KOV, A. A., VORONTSOV, A. V.

"Experimental Investigation of Atmospheric Infrared Radiation" Leningrad, Optika i Spektroskopiya, No 1, 1972, pp 47-51

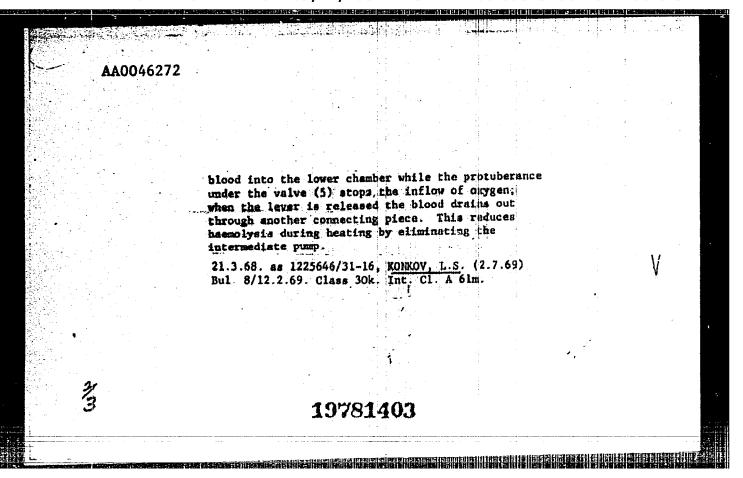
Abstract: This article is in the nature of a review of the experimental work which has thus far been done on infrared radiation of the air upon reentry of space vehicles, although it does include an account of experimental work done by the authors in this field. In their experiments, the authors used air heated by a reflected shock wave in a shock tube whose construction was described by an earlier paper of the authors named above, published in the same journal (vol 32, 1972). The experiments were performed in a chamber containing air at a pressure starting from 25 mm Hg and going up to a pressure range of 40-94 atmospheres, and at temperatures of 6000-85000 K. The temperature and pressure of the air for the shock wave reflection were computed from the velocity of the incident wave with the aid of conservation laws. Portions of the infrared spectrum studied were 2.2, 3.2, 3.3, 4.5, 5.0, and 6.0 µ. Curves are plotted for the absorption factor of the air as a function of temperature and wavelength. Eighteen titles are offered by the article's bibliography.

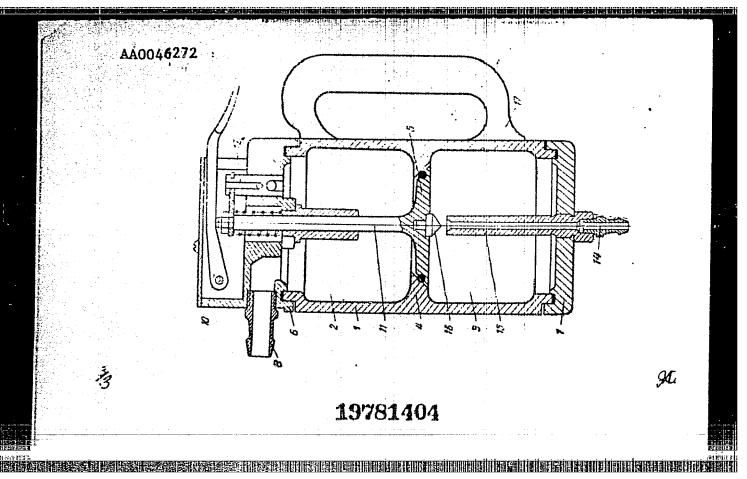
1/1

- 108 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

AA0046272 KONKOV L. S UR 0482


Soviet Inventions Illustrated, Section III Mechanical and General, Derwent, 2-10


237345 BLOOD ASPIRATOR/HEATER consists of a sealed chamber connected to a vacuum pump and a blood heating device. The blood heating device consists of a second sealed chamber (3) mounted under the by-pass valve of the first chamber (2). It has a connecting pipe for draining the blood and another (14) for feeding compressed ocygen which passes deep into the chamber. On one side of the by-pass valve (5) there is a spring-loaded rod (11) operated by a lever (10). The bottom of the rod (16) is shaped to close the opening in the connecting pipe (14). When the top chamber is full the lever (10) is depressed, releasing the valve (5) thus passing

Х

13

19781402

USSR

KONOKOV, V. B.

"Some Gayek-Ren'i Type Inequalities"

Teoriya Veroyatnostey i yeye Primeneniya [The Theory of Probabilities and Its Applications], 1973, Vol 18, No 2, pp 413-415 (Translated from Referativnyy Zhurnal Kibernetika, No 10, 1973, Abstract No 10V54)

Translation: Suppose H is a separable Hilbert space, Z_1 , ..., Z_n are random elements forming a martingale relative to the σ -algebra $B_k = B(Z_1, \ldots, Z_k)$, $EZ_i = 0$, $E | |Z_i| |^2 < \infty$, A_1 , ..., A_n are self-adjoint, positively defined operators, and the inequalities $A_1^{-1} \le A_2^{-1} \le \ldots \le A_n^{-1}$ obtain for the inverse operators. Let us introduce $Z_k = E(A_k^{-1}Z_k, Z_k)$, $Z_k^* = E(A_k^{-1}(Z_k, Z_k))$. In this article, the author proves

Theorem 1. For a nonincreasing set of positive number $\{c_i\}$, for and $\epsilon > 0$ and $1 \le m \le n$

$$\Pr\left\{ \max_{m < k < n} c_k \left\{ \sup_{k \neq 0} \left(A_k \lambda, \lambda \right)^{-1/2} | \left(\lambda, Z_k \right)| \right\} > \varepsilon \right] < \varepsilon^{-2} \left\{ c_m^2 \zeta_m + \sum_{k = m+1}^n c_k^2 \zeta_k^* \right\}.$$

Author's view

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

UZJR.

VDC: 537.31

रको । अस्ति ।

KON'KOV, V. L., KUKUY, A. S., POLYAKOV, N. N., Gor'kiy Physicotechnical Research Institute

"Measuring Conductivity and the Hall Coefficient of Semiconductor Single Crystals by the Four-Probe Method"

Moscow, Izv. AN SSSR: Ser. Fizicheskaya, Vol 36, No 3, Mar 72, pp 603-606

Abstract: The paper discusses a method of direct measurement of the Hall coefficient and conductivity of semiconductors in the form of long single crystal strips. The geometry of the measurement set-up is shown in the figure. Current I is sent through probes 1 and 2, and EMF U_H (Hall voltage) is taken off from probes 3 and 4. The constant magnetic field H is directed orthogonally to the plane of the specimen. Measurements are made in the steady state on direct current. A formula is derived for determining the Hall EMF in terms of the applied current and the dimensions of the specimen. The theoretical results were confirmed experimentally by measurements on germanium and silicon single crystals.

1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

KON'KOV, V. L. et al., IAN SSSR: Ser. Fiz., V 36, 1972, pp 603-606

2/2

121 -

USSR UDC 538.632

KON'KOV, V. L. PAVLOV, N. I., and POLYAKOV, H. N.

"Measuring the Conductivity of Monuniform Semiconductor Layers by the Probe Method"

Tomsk, Izvestiya VUZ--Fizika, No. 10, 1971, pp 33-38

Abstract: The nonuniform semiconductor layers discussed in this article are those which have undergone diffusion, epitaxy, or ion bombardment for investigation of their physical characteristics, and in which the conductivity varies with depth. The authors theoretically examine the possibility of using the four-probe method of measuring the conductivity of such layers and develop a simple formula for the conductivity which can be used for determining its average value under the conditions of that method. They also consider some of the relationships for the change in conductivity that are most often encountered in measurement practice and derive a formula for the error in their theoretical computation. They are associated with the Gor'kiy Physical-Technical Research Institute.

1/1

- 46 -

USSR

UDG 538,63:621.315.5

POLYAKOV, N. N., KON'KOV, V. L.

"Measurement of the Hall Mobility of Current Carriers of High-Resistance Semiconductor Epitaxial Layers by the Probe Method"

Izvestiya Vysshykh Uchebnykh Zavedeniy Fizika, No 6, 1970, pp 35-98

Abstract: A multiprobe method is proposed for measuring the Hill mobility of the current carriers of high-resistance semiconductor epitaxial layers. By means of the solution of the appropriate boundary value problem a formula is obtained for computing the Hall mobility of the current carriers on the basis of the results of probe measurements. Tables of values have been compiled for the multiplier contained in the formula, which depends upon the configuration of the specimen and the position of the probes.

1/1

- 74. -

1/2 015 UNCLASSIFIED PROCESSING DATE--300CT7C TITLE--MEASURING THE HALL COEFFICIENT OF LONG CYLINDRICAL SEMICONDUCTING

SAMPLES -UAUTHOR-(03)-RUBTSOVA, R.A., PAVLOV, N.I., KONKOV, V.L.

CGUNTRY OF INFO--USSR

SGURCE-ZAVOD. LAB., 1970, 36, (2), 201-203

DATE PUBLISHED----70

SUBJECT AREAS--ELECTRONICS AND ELECTRICAL ENGR., PHYSICS

TOPIC TAGS-HALL CENSTANT, ELECTROMOTIVE FORCE, SEMICONDUCTOR PROPERTY

CENTRGL MARKING-NO RESTRICTIONS

PROXY REEL/FRAME--3003/0198

STEP NO--UR/0032/70/036/002/0201/0203

CIRC ACCESSION NO--APO129454

UNGLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

PROCESSING DATE--300CT70 UNCLASSIFIED 2/2 015 CIRC ACCESSION NO--- APO129454 ABSTRACT. A FORMULA FOR CALCULATING THE HALL ABSTRACT/EXTRACT--(U) GP-0-COEFF. OF LONG CYLINDRICAL SEMICONDUCTING SAMPLES ON THE BASIS OF HALL E.M.F. MEASUREMENTS IS DERIVED. IN THESE MEASUREMENTS A STEADY CURRENT IS PASSED INTO THE SAMPLE THROUGH LOW RESISTANCE DURRENT CONTACTS A UNIFORM MAGNETIC FIELD IS DIRECTED AT RIGHT DEPOSITED ON THE ENDS. ANGLES TO THE SAMPLE AXIS. VARIATIONS IN THE MAGNETIC FIELD AT A DISTANCE OF MORE THAN TWO SAMPLE DIA. FROM THE HALL CONTACTS PRODUCE ONLY A NEGLIGIBLE ERROR IN THE RESULTS. thadiassified

USSR

UDO 621,325.6

GINOVKER, A.S., GUZEV, A.A., KON'KOV, V.P., KURYSHEV, G.L., MISHIN, A.I., SINITSA, S.P., TEPKAN, B.G.

"Integrated Circuit With Programmed Structure Using MIS Memory Transistors"

Radiotekhnika i elektronika, Vol XVII, No 7, July 1972, pp 1551-1552

Abstract: The integrated circuit is described of an all-purpose element fulfilled with conventional MIS [metal-insulator-comiconductor] transistors and MIS transistors with a memory (memory transistors). The integrated circuit realizes the following logical function:

$$z (t + \delta) = \overline{v}_{a_1} x_i (i = 1, 2, 3, 4),$$

where x_i is the input logical variables; a_i is the state characterizing the i-th memory translator; z is the output variable; and is the delay. The circuit can be used for construction of a specialized duray for fulfillment of logical, switching, and memory functions and also for construction of all-pur one structurally-uniform logical note, which makes it possible for each problem to organize a specialized computing device by a programmed adjustment of its slements. I fig. 5 ref. Received by editors, 16 June 1971.

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

USSK

UDC: 681.325:65.525

YEGOROV, L. R., ZORIN, V. M., KON'KOV, Yu. A.

"A Pneumatic Element"

USSR Author's Certificate No 309354, filed 2 Jun 69, published 2 Dec 71 (from RZh-Avtomatika, Telemekhanika i Vychislitel'naya Tekhnika, No 7, Jul 72, Abstract No 7A61 P)

Translation: A pneumatic element is proposed which contains a moving gate with a recess and an open central aperture, and a housing with an annular input channel. To increase the operational reliability of the element, the recess in the gate is coaxial with the central aperture and is made in the form of an annular groove with middle diameter equal to the middle diameter of the groove of the annular input channel and with a width equal to the width of the groove for this channel, or twice the width of this groove. One illustration.

1/1

USSR

· VDC: 621-529-525

YEGOROV, L. R., ZORIN, V. M., KON'KOV, Yu. A., YAKOVLEV, A. B.

"A Pneumatic Analog Signal Converter"

Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Obraatsy, Tovarnyye Znaki, No 9, Mar 72, Author's Certificate No 331396, Division G, F, filed 21 Apr 69, published 7 Mar 72, p 155

Translation: This Author's Certificate introduces a pneumatic analog signal converter which contains a "nozzle-baffle" unit with free baffle in a stable suspended state above the nozzle, which is connected to the input channel. As a distinguishing feature of the patent, the functional possibilities of the device are extended by equipping it with additional nozzles which are connected to a signal source and by locating the openings of the additional nozzles between the input nozzle and the edge of the throttling surface of the "nozzle-baffle" unit.

1/1

- 46 -

1/2 011 UNCLASSIFIED PROCESSING DATE: -13NOV70
TITLE--QUANTITATIVE DETERMINATION OF PRIMARY AND SECNDARY ALCOHOLS BY
ANTINO -U-

AUTHOR-(02)-VOLUDINA, M.A., KONKOVA, I.V.

COUNTRY OF INFO--USSR .

SOURCE--VESTN. MOSK. UNIV., KHIM. 1970, 11(1), 119-21

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--ACETATE, TOLUENE, SULFONIC ACID, ESTER, GAS CHROMATOGRAPHY, QUANTITATIVE ANALYSIS, ALCOHOL

CONTROL MARKING-NO RESTRICTIONS

PROXY REEL/FRAME--1999/1758

STEP NO--UR/0189/70/011/001/0119/0121

CIRC ACCESSION NO--APO123559

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

2/2 011 UNCLASSIFIED PROCESSING DATE--13NOV70 CIRC ACCESSION NO--APO123559 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. ISOPROPENYL ACETATE (I) REACTED QUNAT, WITH PRIMARY ALCS. IN 1.5 HR, SECONDARY ALGS. IN LARGER THAN OR EQUAL TO 3 HR, IN THE PRESENCE OF PITOLUNE SULFONIC ACTO [11] AT BODEGREES. THE RESULTING ESTERS WERE DETO. BY GAS CHROMATUGRAPHY. HEAT A MIXT. OF 50-100 MG OF THE ALC., 100-200 MG OF I, AND 1-2 MG OF II ON A WATER BATH AT SODEGREES. INSERT 5 MU L. OF THE REACTION MIXT. ON A COLUMN (2 M LONG, 0.6 CM DIAM.) FILLED WITH 1:9 POLYETHYLENE GLYCOL 3000 ON CHEMOSORB (60-80 MESH) AT 80-150DEGREES WITH HE CARRIER GAS AT 60-70 ML-MIN. WHEN APPLIED TO 16 ALCS., THE ERROR WAS O TO PLUS OR MINUS IPERCENT.

tipe 543.70

DZIOMKO, V. M., OSTROVSKAYA, V. M., and KON'KOVA, O. V., All-Union Scientific Research Institute of Chemical Reagents and Ultrapure Chemical Substances, Moscow, State Committee for Chemistry USSR

"The Extraction-Photometric Determination of Scandium with Use of 1,5-Di-(2'hydroxy-3', 5', 6'-trichlorophenyl)-3-acetylformazan"

Moscow, Zhurnal Analiticheskoy Khimii, Vol XXV, No 2, Feb 70, pp 267-271

Abstract: A number of high-sensitivity reagents proposed for use in the spectrophotometric determination of scandium (xylenol orange, etc.) are not very effective in practice if thorium, zirconium or any of a number of other substances are present. In view of the high selectivity of DHTRICHAZ (expansion shown in article title) for scandium ions, the authors developed a new extraction-photometric method based on this compound.

Scandium was determined in both wolframite and tungsten samples, using DHTRICHAZ as a reagent. The scandium-reagent stoichiometric ratio was found to be 1:2; the molar extinction of the complex, (2.70+0.67)·10⁴ for 675 nm. The authors also suggest a quantitative method for determining scandium in tungsten, wolframite, slag and salts, based upon tests which they ran.

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

1/2 013 UNCLASSIFIED PROCESSING DATE--090CT70
TITLE--EXTRACTION AND PHOTOMETRIC DETERMINATION OF SCANDIUM WITH
1.5.8IS(2,HYDROXY,3,5,6,TRICHLDROPHENYL),3,ACETYLFORMAZAN -UAUTHOR-(03)-DZIOMKO, V.M., OSTROVSKAYA, V.M., KONKUYA, Q.Y.

CCUNTRY OF INFO-USSR

SOURCE-ZH. ANAL. KHIM. 1970, 25(2), 267-71

DATE PUBLISHED----70

SUBJECT AREAS-CHEMISTRY

TOPIC TAGS—CHEMICAL ANALYSIS, SOLVENT EXTRACTION, SCANDIUM, PHOTOMETRIC ANALYSIS

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1994/1918

STEP NO--UR/0075/70/025/002/0267/0271

CIRC ACCESSION NO--APOL15732

UNCLASSIFIED ...

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

2/2 013 **UNCLASSIFIED** PROCESSING DATE--090CT70 CIRC ACCESSION NO-APO115732 ABSTRACT/EXTRACT--(U) GP-0-ABSTRACT. 1,5,81512,HYDROXY,3,5,6,TRICHLOROPHENYL),3,ACETYLFORMAZAN [1] WAS SYNTHETIZED AND STUDIED AS A REAGENT FOR SC DETN. I IS A CINNAMON COLORED POWDER, M.P. 202.3DEGREES AFTER RECRYSTN, FRUM BOILING C SUB6 H SUB6. I REACTS WITH SC IN A 2:1 MOLAR RATIO; MAX. ABSURBANCE OF THE COMPLEX IS AT 675 NM AND THE MOLAR ABSORPTIVITY 15 (2.70 PLUS OR MINUS 0.67) TIMES 10 PRIME4. MAX. ABSURBANCE OCCURS IN THE PH RANGE 4.7-6.5. A QUANT. METHOD IS DESCRIBED FOR THE DETN. OF SC IN WOLFRAMITE IN WHICH THE SC IS EXTD. WITH A SOLN. OF I IN ETOAC, AND A QUAL. METHOD FOR SC DETECTION IN SALTS AND SLAGS. TH(IV), ZR(IV), Y(III), LA(III), ND[III], PR[III], SM[III], ER[III], AND MN[II], 1000 FOLD AMTS., AND AL(III), BI(III), AND IN(III), 25 FOED AMTS., DO NOT INTERFERE: CU(II), CO(III), FE(III), GA, ZN, PB(III), HG(II), HG(II), V(V), F PRIME NEGATIVE, SO SUB4 PRIMEZ NEGATIVE, AND PO SUB4 PRIMES NEGATIVE DO. FACILITY: ALL UNION SCI. RES. INST. CHEM. REAGENTS SPEC. PURE CHEM., MUSCOW, USSR.

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

USSR

UDC: 621.382.3

KONNIKOV, S. G., KOP'YEV, P. S., and TROFIM, V. G.

"Investigating the Dependence of the Luminescent Characteristics of n and p Type $\text{GaP}_{x}^{\text{As}}_{1-x}$ and $\text{Al}_{x}^{\text{Ga}}_{1-x}^{\text{As}}$ Solid Solutions"

Leningrad, Fizika i tekhnika poluprovodnikov, No 10, 1972, pp 1879-

Abstract: The present article is the latest of a series published by the first-named author in collaboration with these or other researchers regarding the nature of photoluminescence spectra in solid solutions of GaP_x/s_{1-x} and Al_xGa_{1-x}As. In the present paper, results are given of experimental investigations into the position of the fringe band maximum radiation and the relative radiation intensity in the band as they depend on the composition of the solid solutions of both n and p types. The experimental specimens were in the form of epitaxial layers obtained by the liquid and gas transport method, their compositions being determined by the microroentgen spectral method with the JXA-5A analyzer. The luminescence was excited by a DRSh-250 lamp with a filter system removing the yellow and green mercury lines, and the radiation spectra were recorded by the MDR-2 monochromator with a grating of 1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

USSR

UDC: 621.382.3

ALFEROV, Zh. I., Fizika i tekhnika poluprovodnikov, No 10, 1972, pp 1879-1887

600 lines/mm. The radiation receivers were germanium photodiodes or the FEU-22. The authors express their gratitude to N. V. Klepikova and V. P. Kuz'min for their assistance with the experiments, and V. M. Tuchkevich for his interest in the work.

2/2

- 90 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

1/3 018 UNCLASSIFIED

PROCESSING DATE--27NOV70

TITLE--MILITARY SCHOOL ADMISSION PROCESS EXPLAINED, FOR THOSE WHO DREAM OF BECOMING OFFICERS -U-

AUTHOR--KONNOPLYANIK, V.

COUNTRY OF INFO--USSR

K

SOURCE--MOSCOW, STARSHINA SERZHANT, RUSSIAN, NO 1, JANUARY 1970, PP 34-35

DATE PUBLISHED --- JAN70

SUBJECT AREAS--BEHAVIORAL AND SOCIAL SCIENCES

TOPIC TAGS--MILITARY SCHOOL, ENTRANCE REQUIREMENT, MILITARY TECHNICAL TRAINING, MILITARY ENGINEER TRAINING, MILITARY MEDICAL FACILITY, TRAINING PROCEDURE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1995/0563

STEP NO--UR/0614/70/000/001/0034/0035

CIRC ACCESSION NO--APOLI6173

------UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

2/3 018 UNCLASSIFIED PROCESSING DATE--27NOV70 CIRC ACCESSION NO--APOLI6173 ABSTRACT/EXTRACT--(U) GP-O-ABSTRACT. SECONDARY MILITARY EDUCATIONAL INSTITUTIONS TRAIN SPECIALIST OFFICERS. AFTER THREE YEARS OF STUDY THE GRADUATES OF SECONDARY MILITARY EDUCATIONAL INSTITUTIONS RECEIVE THE RANK OF OFFICER AND, AT THE SAME, TIME, ARE AWARDED A DIPLOMA OF A SINGLE ALL UNION TYPE. HIGHLY SKILLED MILITARY SPECIALISTS ARE TRAINED IN MILITARY ACADEMIES, AT HIGHER MILITARY AND NAVAL SCHOOLS, THE MILITARY INSTITUTE, AND IN THE MILITARY DEPARTMENTS OF CERTAIN CIVILIAN INSTITUTIONS OF HIGHER EDUCATION. THE PERIOD OF STUDY IN HIGHER MILITARY TRAINING INSTITUTIONS IS FOUR OR FIVE YEARS, AND IN THE ACADEMY OF MILITARY MEDICINE IT IS SIX YEARS. UPON SUCCESSFUL COMPLETION OF A HIGHER MILITARY EDUCATIONAL INSTITUTION, THE GRADUATE IS AWARDED THE RANK OF OFFICER AND A DIPLOMA OF A SINGLE ALL UNION TYPE FOR HIGHER EDUCATION AND THE SPECIAL FIELD MASTERED. MILITARY MEN OF REGULAR OR EXTENDED SERVICE, MEMBERS OF THE MILITARY RESERVE ISOLDIERS, SAILORS, SERGEANTS, AND MASTER SERGEANTS), THE GRADUATES OF THE SUVOROV AND NAKHIMOV SCHOOLS AND DRAFT AGE YOUTH ARE ACCEPTED! AT ALL SECONDARY MILITARY EDUCATIONAL INSTITUTIONS. AT HIGHER MILITARY POLITICAL SCHOOLS, AND AT THE MILITARY POLITICAL DEPARTMENT OF THE ROSTOV HIGHER ENGINEERING COMMAND SCHOOL IMENT CHIEF MARSHALL OF ARTILLERY M. I. AT HIGHER COMMAND SCHOOLS EGENERAL MILITARY, TANK, ARTILLERY, NEDELIN. COMMUNICATIONS, ENGINEERING, CHEMICAL, TRANSPORT, AND SO FORTH). ΑT HIGHER TANK TECHNOLOGY MILITARY TECHNICAL SCHOOLS. AT HIGHER MILITARY AVIATION SCHOOLS FOR PILOTS AND NAVIGATORS. AT HIGHER ENGINEERING COMMAND AND NAVAL ENGINEERING SCHOOLS. . AT THE MILITARY INSTITUTE FOR

UNCLASSIFIED

THE CASE OF THE STATE OF THE ST

FOREIGN LANGUAGES.

3/3 018 UNCLASSIFIED PROCESSING DATE--27NOV70 CIRC ACCESSION NO--APOIL6173 ABSTRACT/EXTRACT--AT THE MILITARY DEPARTMENTS IN CERTAIN CIVILIAN EDUCATIONAL INSTITUTIONS (EXCEPT FOR THE MILITARY DEPARTMENT AT THE MOSCOW INSTITUTE OF FINANCE). AT THE ENGINEERING DEPARTMENTS OF THE MILITARY ENGINEERING ACADEMIES IMENI F. E. DZERZHINSKIY AND IMENI A. F. AT THE ACADEMY OF MILITARY MEDICINE IMENI S. M. KIROV. WHICH DOCUMENTS ARE NEEDED AND WHERE TO SEND THEM. PREPARATION FOR EXAMINATIONS. ENTRANCE EXAMS. ENROLLING FOR STUDIES. UNCLASSIFIED Transportung of the contract o

1/2 026

UNCLASSIFIED

PROCESSING DATE--090CT70

TITLE--DOSIMETRIC REQUIREMENTS TO THE ACCURACY OF ROENTGENOMETRIC

INVESTIGATIONS IN RADIUM THERAPY -U-

AUTHOR-104)-KUZETSOV, E.A., SINITSYN, R.V., MALEVICH, M.A., KONNOV, B.A.

COUNTRY OF INFO--USSR

SOURCE--MEDITSINSKAYA RADIOLOGIYA, 1970, VOL 15, NR 4, PP 67-70

DATE PUBLISHED----70

SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES

FORIC TAGS-RADIUM, RADIOTHERAPY, DOSIMETRY, CHARGED PARTICLE, ELECTROMAGNETIC RADIATION

CONTROL MARKING-NO RESTRICTIONS

PROXY REEL/FRAME--1990/0959

STEP NO--UR/0241/70/015/004/0067/0070

CIRC ACCESSION NO--APO109116

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

are a succession de la companion de la compani

		UNCLASSIFIED			
	CT(U) GP-U	- ABSTRACI. AS: A	THE CHANGE	Tit we be a minimum.	
DUSE IN THE	FOCUS IN DIS	PLACEMENT OF THE THE TOTAL PLACEMENT OF THE T	TE RADIATIO	N AMD HEAVY	CHARGED
	~ KAL (\ITS) [3 [2 K/13]	CULAR DIRECTION. O-RADIOLOGICHESKI	4 754	, , , , , , , , , , , , , , , , , , , 	
ISENTRAL'NYY ZDRAVOOKHRAN	ENIYA SSSR.	Q-KWD (BEBOLOMES)		•	
		:			
		: :			
		1997年,1997年,1997年,			
	•				
			:		•
					<u>.</u>
orani di salah dari dari dari dari dari dari dari dari					

USSR

UDC 621.78:539.219.3 ·

NOVIKOV, B. A., KONNOVA, I. Yu., SHCHERBEDINSKIY, G. V., GOLOVANENKO, S. A., and MASLENKOV, S. B., Moscow

"Carbon Redistribution and Diffusion in Bimetals"

Moscow, Fizika i Khimiya Gbrabotki Materialov, No 5, Sep-Oct 72, pp 83-87

Abstract: Using C¹⁴ and methods of autoradiography and radiometric layer analysis the redistribution of carbon in St. 3+0Khl3 bimetal was studied for two variants: without an intermediate layer and with an intermediate nickel layer. It was shown that carbon passes from the carbon steel into the stainless steel both in the process of manufacture and during all subsequent annealings. The presence of a nickel intermediate layer inhibits the passage of carbon from steel St. 3 to 0Khl3 and strongly varies the nature of carbon redistribution in the contact zone.

For the purpose of selecting the best bimetal cladding layers for long-time service at elevated temperatures the temperature relationships of diffusion coefficients were determined for carbon in OKh13 ferrite steel and EI943 (OKh23N28M3D3T), EI628(OKh23N28M2T), and EI432 (OKh17N13M3T) austenitic steels. Comparison of the data on these steels showed that up to 700°C 1/2

USSR

NOVIKOV, B. A., et al., Fizika i Khimiya Obrabotki Materialov, No 5, Sep-Oct 72, pp 83-87

carbon penetrates EI432 steel to the greatest extent and EI943 steel to the least extent, while about 700°C carbon penetrates OKh13 steel the greatest and EI943 steel the least. 3 figures, 1 table, 2 bibliographic references.

2/2

- 105 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

VDC 669-419.4

KONNOVA, I. Yu., and GOLOVANENKO, S. A., [Central Scientific Research Institute of Ferrous Metallurgy imeni I. P. Bardin]

"Nickel Interlayers for Corrosion-Resistant Bimetals"

Moscow, Metallovedeniye i Termicheskaya Obrabotka Metallov, No 10, 1972,

Abstract: The effect of different interlays (nickel, nickel-copper) on the carburization kinetics of the cladding layer on different steels was studied. Items made of these steels (Kh18N10 and OKh13) were made to perform at 425-550°C for up to 1000 hr. Experimental results without interlayers showed that the depth of the carbon diffusion into the cladding layer increases with temperature and exposure time. Nickel-copper interlayers considerably inhibit the penetration of carbon into the cladding layer. However, this depends on the concentration of Cu in the interlayer. Interlayers made of pure nickel or nickel + 30% Cu can not present a reliable barrier for the C diffusion. The best results in this respect were obtained with Ni-Cu interlayers containing 40-45% Cu. A further increase of the concentration of Cu increases the quality of barriers against carbon penetration, but the deformation temperature and oxidation of interlayers

KONNOVA, I. Yu., and GOLOVANENKO, S. A., Metallovedeniye i Termicheskaya Obrabotka Metallov, No 10, 1972, pp 32-37

deteriorate. Microstructural studies of the interlayers showed the presence of film carbides on interlayers which are usually formed after long service at high temperature. The morphology of these carbides depends on the composition of the interlayer, the steel, and the cladding layer.

2/2

- 51 -

YELKINA, V. G., KONMOVA, N. A., and TOMIYANTS, YE. G., Tashkent Oblast Sanitary Epidemiological Laboratory

"A Six-Year Virological Study of Influenza in Tashkent Colast"

Tashkent, Meditsinskiy Zhurnal Uzbekistana, No 1, 1970, pp 31-54

Abstract: A study of 1,222 throat smears taken from patients with acute respiratory diseases between 1962 and 1967, and from autopsy influenza virus strains were isolated, representing 1.7 percent of all flu viruses. Six strains of the A2 type were isolated during the 1962 flu epidemic, one strain of the B type was isolated during in 1967. In the 1963-1964 interepidemic period, the A2 types was parainfluenza D type in 0.2-0.8% of cases. The flu epidemic of the February, 1965, was caused by the A 2 type, which was diagnosed in 1966, and in early January, 1967, the disease was caused mainly by 1968. Virus (55-56.2%). In January through March, the 1.2 type

- 46 -

USSR

YELKIMA, V. G., et al., Tashkent, Meditsinskiy Zhurnal Jebekistana, No 1, 1970, pp 31-34

predominated (70.3%). Between 1963 and 1957, 4, 242 sera of healthy donors were tested for immunity level. High immunity levels were recorded against viruses of type A2 (52.2%), 3 (76.8%), and D (73.8%) as a result of the A2 and B flu outbreak in 1962. In 1964, the concentration of antibodies against all viruses (but especially the A2 types), was markedly reduced, indicating a new outbreak, which against the A2 type virus rose threefold and fall agains a year later. The last flu wave in Becember, 1966, and January-Pedruary, up to the level observed in 1963. Virological studies are gaining importance in medical practice and in the influence diagnosis.

2/2

ФС 669.245:536.777:669.787

GOLOVANENKO, S. A., TOMILIN, I. A., and KONNOVA, I. YU., MOSCOW

"Activity of Carbon in Nickel-Base Alloys"

Moscow, Izvestiya Akadenii Nauk SSSR, Metally, No 2, Mar-Apr 73, pp 72-75

Abstract: The activity of carbon in Ni-Cu alloys containing up to 30 wt% Cu was investigated in the 1000-1200°C temperature interval. The results are discussed by reference to diagrams showing the carbon distribution in ternary Ni-alloy-Ni samples, the effect of Cu on the activity coefficient of C in Ni, the solubility of C in Ni-Cu alloys, and the temperature dependences of the activity coefficient of C in systems N1+4% at. wt. of Cr, V, W, Ti and Mb in the 800-1200°C temperature interval. Cu is shown to increase the activity of C in Ni; Nb and Ti decrease it; V, Cr, and W increase it. These effects are discussed in comparison with the tendency of alloying elements to the formation of carbides and intermetallides. Four figures, three tables, seven formulas, five bibliographic references.

1/1

- 63 ..

TITLE--DAVYDOV SPLITTING IN MIXED MOLECULAR CRYSTALS -U-

PROCESSING DATE--160CT70

AUTHOR-(02)-DUBOVSKIY, O.A., KONOBEYEV, YU.V.

COUNTRY OF INFO--USSR

SOURCE--FIZ. TVERD. TELA 1970, 12(2), 405-14

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY, PHYSICS

TOPIC TAGS--CRYSTAL, NAPHTHALENE, ISOTOPE, LIGHT POLARIZATION, EXCITON

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1989/0453

STEP NO--UR/0181/70/012/002/0405/0414

CIRC ACCESSION NO--APOLO7059

UNCLASSIFIED

UNCLASSIFIED PROCESSING DATE--160CT70

ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE THEORY OF FRENKEL EXCITON

STATES DEVELOPED RECENTLY IN TERMS OF THE FORMALISM OF GREEN FUNCTIONS

FOR BINARY ISCTOPIC SOLID SOLNS. OF SUBSTITUTION WITH L MOL. IN THE UNIT

INVESTIGATE THE EVOLUTION OF DAVIDOV MULTIPLETS AND THE POLARIZATION

RATIO OF LIGHT ABSORPTION BANDS IN MIXED MOL. SOLNS. OF THE TYPE

INTERPOLATION EXPRESSION WAS FOUND WHICH DESCRIBES THE POSITION AND THE

SHAPE OF ABSORPTION PEAKS IN THE SOLID SOLN. FOR AN ARBITARY COMPN. OF

UNCLASSIFIED

2/2

1/2 015

TITLE--DIPOLE DIPOLE INTERACTION OF SUBSTITUTIONAL IMPURITY MOLECULES IN PROCESSING DATE--300CT70

AUTHOR-1021-KAMENJGRADSKIY, N.E., KONOBEEV. YU.V.

COUNTRY OF INFO--USSR

SOURCE-PHYSICA STATUS SOLIDI, 1970, VOL 37, NR 1, PP 29-37

DATE PUBLISHED----70

SUBJECT AREAS-PHYSICS

TOPIC TAGS--CRYSTAL IMPURITY, DIPOLE INTERACTION, MOLECULAR INTERACTION, DIELECTRIC CONSTANT, CALCULATION

CENTROL HARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1989/1081

STEP NO--GE/0030/70/037/001/0029/0037

CIRC ACCESSION NO--APO107590

UNCLASSIFIED

015 UNCLASSIFIED PROCESSING DATE-- 300CT70 CIRC ACCESSION NO--APO107590 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. A THEORY IS GIVEN UF EFFECTIVE DIPOLE DIPOLE INTERACTIONS BETWEEN TWO IDENTICAL SUBSTITUTIONAL GUEST MOLECULES AT LARGE INTERMOLECULAR DISTANCE. AN INTERACTION THEORY FOR INTERSTITIAL IMPURITY MOLECULES WAS DEVELOPED IN (3). A TWO LEVEL SCHEME FOR THE GUEST AND HOST MOLECULES IS ASSUMED. LOCAL FIELD CORRECTIONS ARE DISCUSSED. IT IS SHOWN THAT THE DIPOLE DIPOLE INTERACTION OF THE GUEST MOLECULES IN A CRYSTAL IS THE INTERACTION OF THE EFFECTIVE DIPOLE MOMENTS. THE VALUES OF SUCH EFFECTIVE DIPOLE MOMENTS DIFFER FROM THEIR VALUES IN VACUUM BY A FACTOR WHICH IS EXPRESSED BOTH BY THE DIELECTRIC CONSTANT AT THE IMPURITY TRANSITION FREQUENCY AND THE MICROSCOPIC CHARACTERISTICS OF THE MEDIUM. FACILITY: INSTITUTE OF PHYSICS AND ENERGETICS, OBNINSK.

UNCLASSIFIED

1/2 028 UNCLASSIFIED PROCESSING DATE--27NOV70
TITLE--RADIATION GROWTH OF URANIUM DURING LOW BURN UPS -U-

AUTHOR-(04)-KONOBEYEVSKIY, S.T., PANTELEYEV, L.D., LEVITSKIY, B.M.,

COUNTRY OF INFO--USSR

SOURCE--AT. ENERG. 1970. 28(4), 326-32

DATE PUBLISHED ---- 70

SUBJECT AREAS -- PHYSICS

TOPIC TAGS--URANIUM, IRRADIATION, CRYSTAL LATTICE DEFORMATION, LATTICE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3008/0558

STEP NU--UR/0089/70/028/004/0326/0332

CIRC ACCESSION NO--APO137644

UNCLASSIFIED

PROCESSING DATE--27NDV70 UNCLASSIFIED 028 2/2 CIRC ACCESSION NO--AP0137644 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. RADIATION GROWTH OF U AT MINUS 150DEGREES AND 160DEGREES WAS STUDIED IN THE 1ST STAGES OF IRRADN., US BEING THERMALLY PRETREATED AT VARIOUS TEMPS. 20-620DEGREES. THE INITIAL STAGE OF GROWTH WAS THE RESULT OF THE FORMATION OF INDIVIDUAL DEFECTS CAUSING THE ANISOTROPIC DEFORMATION OF THE ALPHA U LATTICE IN THE TOTAL VOL. OF THE METAL, NOT ONLY IN THE NEIGHBORHOOD OF THE THERMAL PEAKS. OWING TO VACANCIES FORMED DURING THE KNOCK OUT OF ATOMS BY FISSION FRAGMENTS, THE CONTRACTION INSIDE THE ZIGZAG LIKE LAYERS OF ALPHA U LATTICE TOOK PLACE AND THE DISPLACED ATOMS WERE SITUATED IN POSITIONS WITH THE COORDINATION NO. OF 5, PYRAMIDAL DEFECTS, OR 4 OR 6, OCTAHEORAL DEFECTS: VOL. AND AXIAL DEFORMATIONS CAUSED BY THE FORMER DEFECTS EXCEEDED MANY TIMES THOSE ARISING WHEN OCTAHEDRAL DEFECTS WERE FORMED. IN THE PRESENCE OF LATTICE IMPERFECTIONS, THE PYRAMIDAL DEFECTS WERE FORMED PREDOMINANTLY. IN THE 1ST STAGE OF GROWTH, PARTIAL RECOMBINATION OF DEFECTS TOOK PLACE WHICH REDUCED THEIR AMT. TEMPS., DISPLACED ATOMS WERE PREVENTED FROM RECOMBINING OWING TO THEIR ADSORPTION ON VARIOUS LATTICE IMPERFECTIONS, WHICH EXPLAINED THE HIGH RATE OF GROWTH IN THESE SPECIMENS. WHEN THE LOCAL CONCN. OF DEFECTS REACHED A SUFFICIENTLY HIGH VALUE, THE FORMATION OF THEIR COMPLEXES STARTED OWING TO THE FIELD OF TENSION. THE STAGE WHEN AN EQUIL. BETWEEN THE NO. OF FORMED INDIVIDUAL DEFECTS AND THE NO. OF DEFECTS FORMING THEIR COMPLEXES WAS REACHED CORRESPONDED TO THE LINEAR COURSE OF THE RADIATION GROWTH CURVE.

UNCLASSIFIED

UDC: 621.375.82

GORBAN', I. S., KONONCHUK, G. L., and KONONCHUK, L. P.

"Interference Effects in a Complex Resonator"

Kiev, V sb. Kvant. elektronika (Quantum Electronics--collection of works)
"Nauk. dumka," No 6, 1972, pp 127-131 (from RZh--Fizika, No 4, 1973, Abstract
No 4D1196)

Translation: The authors examine the possibility of different cavities in a complex ruby laser resonator to lend stability to the interference pattern during free oscillation. It is shown that during the oscillation the light passing through a standard ruby rod markedly spoils its space coherence as a result of dispersion by nonuniformities; hence the light beams reflected by the rod termini do not interfere with one another. In an air cavity, terminus-reflector interference is possible with careful adjustment of the proper reflecting planes. The coherent light in the laser as a function of the amount of dispersion is obtained. Bibliography of 10. Authors' abstract

1/1

- 36 -

USSR

UDC: 621.375.82

GCRBAN', I. S., KONONCHUK, G. L., and KONONCHUK, L. P.

"Interference Effects in a Complex Resonator"

Kiev, V sb. Kvant. elektronika (Quantum Electronics--collection of works)
"Nauk. dumka," No 6, 1972, pp 127-131 (from RZh--Fizika, No 4, 1973, Abstract
No 4D1196)

Translation: The authors examine the possibility of different cavities in a complex ruby laser resonator to lend stability to the interference pattern during free oscillation. It is shown that during the oscillation the light passing through a standard ruby rod markedly spoils its space coherence as a result of dispersion by nonuniformities; hence the light beams reflected by the rod termini do not interfere with one another. In an air cavity, terminus-reflector interference is possible with careful adjustment of the proper reflecting planes. The coherent light in the laser as a function of the amount of dispersion is obtained. Bibliography of 10. Authors' abstract

1/1

- 36 -

UDC: 620.171.2

SKLYAROV, N. M., KONONCHUK, N. I., ISHCHENKO, I. I., POGREBNYAK, A. D., LOZITSKIY, L. P., SHIPIL', V. Ya., LAPITSKIY, Yu. A., SINAYSKIY, B. N., KUFAYEV, V. N., Kiev

"Determination of Durability of Heat-Resistant Alloys in Unstable Operating Modes Considering Brief Overloads"

Kiev, Problemy Prochnosti, No 3, Mar 73, pp 100-104.

Abstract: The specific features of application of the linear hypothesis of addition of damage during calculation and accelerated experimental determination of the guaranteed durability of parts operating with brief overloads during individual stages in the program of unstable loading with static and variable loads are studied, as well as problems of adjustment of the corresponding calculation characteristics for heat-resistant alloys. The concept developed by the authors is in that the share of durability expended at any moment is determined by successive addition of its parts for stages of the program under the combined influence of loads and temperatures in a quasi-stable mode for each stage; the sets of long-term static strength and endurance characteristics are utilized, considering the influence of the loading prehistory and the corresponding limiting curves for various

1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R001401420019-9"

USSR

SKLYAROV, N. M., et al, Kiev, Problemy Prochnesti, No 3, Mar 73, pp 100-104

temperatures and durabilities. The spectrum of loads is studied in combination with the sequence of their application, i.e., in time.

5/5

· 71 -

USSR

UDC 519.24

KONONCHUK, L. P.

"Estimating the Spectrum of a Homogeneous Random Field"

Teoriya Veroyatnostey i Mat. Statist. Mezhved. Nauch. Sb., [Theory of Probabilities and Mathematical Statistics. Indepartmental Scientific Collection], 1970, No 3, pp 69-79, (Translated from Referativnyy Zhurnal Kibernetika, No 5, 1971, Abstract No. 5V198 by the author).

Translation: Certain consistent estimates of a correlation function and the spectral density of a homogeneous random field satisfying certain limitations placed on the central fourth order moments are studied.

1/1
